19621 measured reflections

 $R_{\rm int} = 0.041$ 

3939 independent reflections 3204 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 4-(4-Chlorophenyl)-3-phenyl-5-(4-pyridyl)-4H-1,2,4-triazole

#### Jing Hu,<sup>a</sup> Guochun Ma,<sup>a</sup> Guofeng Chen<sup>a,b</sup> and Wengin Zhang<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and <sup>b</sup>Department of Chemistry, Hebei University, Baoding 071002, People's Republic of China

Correspondence e-mail: hujing8012@yahoo.com.cn

Received 7 November 2007; accepted 7 November 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.104; data-to-parameter ratio = 18.1.

The title compound, C<sub>19</sub>H<sub>13</sub>ClN<sub>4</sub>, was synthesized by the condensation of isonicotinohydrazide and N-(4-clorophenyl)benzimidovl chloride in N.N-dimethylacetamide. In the title molecule, the triazole ring is oriented at dihedral angles of 34.64(2), 30.97(3) and  $71.82(3)^{\circ}$  with respect to the pyridyl, phenyl and chlorophenyl rings, respectively.

#### **Related literature**

For related literature, see: Kido et al. (1993); Li et al. (2006); Zhu et al. (2000); Zhu et al. (2001). For bond-length data, see: Allen et al. (1987).



### **Experimental**

#### Crystal data

| $C_{19}H_{13}ClN_4$            | V = 1527.0 (3) Å <sup>3</sup>             |
|--------------------------------|-------------------------------------------|
| $M_r = 332.78$                 | Z = 4                                     |
| Monoclinic, $P2_1/n$           | Mo $K\alpha$ radiation                    |
| a = 5.6436 (8) Å               | $\mu = 0.26 \text{ mm}^{-1}$              |
| b = 16.730 (2)  Å              | T = 113 (2) K                             |
| c = 16.239 (2) Å               | $0.32 \times 0.28 \times 0.10 \text{ mm}$ |
| $\beta = 95.193 \ (7)^{\circ}$ |                                           |

#### Data collection

| Rigaku Saturn diffractometer               |  |  |  |
|--------------------------------------------|--|--|--|
| Absorption correction: multi-scan          |  |  |  |
| (Jacobson; 1998)                           |  |  |  |
| $T_{\rm min} = 0.912, T_{\rm max} = 0.975$ |  |  |  |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 218 parameters  $wR(F^2) = 0.104$ H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^-$ S = 1.09 $\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$ 3939 reflections

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure (Rigaku/MSC, 2004); software used to prepare material for publication: CrystalStructure.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2371).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
- Kido, J., Hongawa, K., Okuyama, K. & Nagai, K. (1993). Appl. Phys. Lett. 63, 2627-2629.
- Li, Z. H., Wong, M. S., Fukutani, H. & Tao, Y. (2006). Org. Lett. 8, 4271-4274. Rigaku/MSC (2004). CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zhu, D., Xu, Y., Mei, Y. H., Shi, Y. J., Tu, C. & You, X. Z. (2001). J. Mol. Struct. 559 119-125
- Zhu, D., Zhu, X. L., Xu, L., Shao, S. C., Raj, S. S. S., Fun, H. K. & You, X. Z. (2000). J. Chem. Crystallogr. 30, 429-432.

supplementary materials

Acta Cryst. (2007). E63, o4671 [doi:10.1107/S1600536807056747]

## 4-(4-Chlorophenyl)-3-phenyl-5-(4-pyridyl)-4H-1,2,4-triazole

## J. Hu, G. Ma, G. Chen and W. Zhang

### Comment

In recent years, the 1,2,4-triazole derivatives have appealed much attention by their structures, specific magnetic (Zhu *et al.*, 2000; Zhu *et al.*, 2001) and electron-transporting properties (Kido *et al.*, 1993; Li *et al.*, 2006). We report herein the crystal structure of the title compound, (I), in order to elucidate its molecular conformation.

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). Rings A (C1—C6), B (N1/N2/N3/C7/C8), C (N4/C9—C13) and D (C14—C19) are, of course, planar and the dihedral angles between them are A/B = 71.82 (3)°, A/C = 62.87 (3)°, A/D = 68.98 (2)°, B/C = 34.64 (2)°, B/D = 30.97 (3)° and C/D = 62.71 (3)°.

#### Experimental

The title compound was synthesized by the reaction of isonicotinohydrazide (274.0 mg, 2.0 mmol) and *N*-(4-clorophenyl)benzimidoyl chloride (500.0 mg, 2.0 mmol) in *N*,*N*-dimethyl-acetamide (10 ml). The mixture was stirred and refluxed for 5 h. After cooling, the product crystallized from the orange reaction mixture. It was filtered off, washed with *N*,*N*-dimethylacetamide and dried *in vacuo* to give the product as fine colorless needles. Single crystals of (I) were obtained by slow evaporation of the ethanol solution in 15 d (yield; 385.0 mg, 57%, m.p. 488–489 K).

### Refinement

H atoms were positioned geometrically, with C—H = 0.95 Å for aromatic H atoms and constrained to ride on their parent atoms, with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

#### **Figures**



Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

#### 4-(4-Chlorophenyl)-3-phenyl-5-(4-pyridyl)-4H-1,2,4-triazole

| Crystal data                                     |  |
|--------------------------------------------------|--|
| C <sub>19</sub> H <sub>13</sub> ClN <sub>4</sub> |  |
| $M_r = 332.78$                                   |  |
| Monoclinic, $P2_1/n$                             |  |

 $F_{000} = 688$  $D_x = 1.448 \text{ Mg m}^{-3}$ Melting point: 488 K

| Hall symbol: -P 2yn            |
|--------------------------------|
| <i>a</i> = 5.6436 (8) Å        |
| <i>b</i> = 16.730 (2) Å        |
| <i>c</i> = 16.239 (2) Å        |
| $\beta = 95.193 \ (7)^{\circ}$ |
| V = 1527.0 (3) Å <sup>3</sup>  |
| Z = 4                          |

#### Data collection

| Rigaku Saturn<br>diffractometer                       | 3204 reflections with $I > 2\sigma(I)$ |
|-------------------------------------------------------|----------------------------------------|
| Radiation source: rotating anode                      | $R_{\rm int} = 0.041$                  |
| Monochromator: confocal                               | $\theta_{\text{max}} = 28.7^{\circ}$   |
| T = 113(2)  K                                         | $\theta_{\min} = 1.8^{\circ}$          |
| ω scans                                               | $h = -7 \rightarrow 7$                 |
| Absorption correction: multi-scan<br>(Jacobson; 1998) | $k = -22 \rightarrow 22$               |
| $T_{\min} = 0.912, \ T_{\max} = 0.975$                | $l = -21 \rightarrow 21$               |
| 19621 measured reflections                            | Standard reflections: ?                |
| 3939 independent reflections                          |                                        |

Mo Kα radiation

Cell parameters from 3105 reflections

 $\lambda = 0.71070 \text{ Å}$ 

 $\theta = 1.8-25.0^{\circ}$   $\mu = 0.26 \text{ mm}^{-1}$  T = 113 (2) KPrism, colorless  $0.32 \times 0.28 \times 0.10 \text{ mm}$ 

#### Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                               |
|----------------------------------------------------------------|------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                           |
| $R[F^2 > 2\sigma(F^2)] = 0.045$                                | H-atom parameters constrained                                                      |
| $wR(F^2) = 0.104$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.487P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.09                                                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                |
| 3939 reflections                                               | $\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$                                |
| 218 parameters                                                 | $\Delta \rho_{min} = -0.49 \text{ e } \text{\AA}^{-3}$                             |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                        |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

|     | x            | у            | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|---------------|---------------------------|
| Cl1 | 0.04399 (10) | 0.03869 (2)  | -0.12216 (3)  | 0.03717 (14)              |
| N1  | 0.0462 (2)   | 0.27192 (7)  | 0.15171 (7)   | 0.0170 (3)                |
| N2  | 0.1492 (2)   | 0.37831 (8)  | 0.22700 (8)   | 0.0217 (3)                |
| N3  | -0.0129 (2)  | 0.33435 (8)  | 0.26789 (8)   | 0.0219 (3)                |
| N4  | 0.6710 (3)   | 0.41964 (8)  | -0.01248 (9)  | 0.0261 (3)                |
| C1  | 0.0402 (3)   | 0.21366 (8)  | 0.08607 (9)   | 0.0168 (3)                |
| C2  | -0.1579 (3)  | 0.20819 (9)  | 0.02902 (9)   | 0.0193 (3)                |
| H2  | -0.2925      | 0.2413       | 0.0342        | 0.023*                    |
| C3  | -0.1572 (3)  | 0.15387 (9)  | -0.03561 (10) | 0.0225 (3)                |
| H3  | -0.2911      | 0.1493       | -0.0752       | 0.027*                    |
| C4  | 0.0415 (3)   | 0.10650 (9)  | -0.04141 (9)  | 0.0228 (3)                |
| C5  | 0.2388 (3)   | 0.11159 (9)  | 0.01555 (10)  | 0.0242 (4)                |
| Н5  | 0.3732       | 0.0784       | 0.0104        | 0.029*                    |
| C6  | 0.2378 (3)   | 0.16572 (9)  | 0.08021 (10)  | 0.0203 (3)                |
| Н6  | 0.3713       | 0.1698       | 0.1200        | 0.024*                    |
| C7  | 0.1828 (3)   | 0.34010 (8)  | 0.15814 (9)   | 0.0180 (3)                |
| C8  | -0.0723 (3)  | 0.27118 (9)  | 0.22224 (9)   | 0.0179 (3)                |
| С9  | 0.3466 (3)   | 0.36720 (9)  | 0.09792 (9)   | 0.0185 (3)                |
| C10 | 0.2993 (3)   | 0.35674 (9)  | 0.01233 (10)  | 0.0207 (3)                |
| H10 | 0.1561       | 0.3319       | -0.0098       | 0.025*                    |
| C11 | 0.4652 (3)   | 0.38327 (9)  | -0.03956 (10) | 0.0222 (3)                |
| H11 | 0.4319       | 0.3754       | -0.0974       | 0.027*                    |
| C12 | 0.7103 (3)   | 0.43173 (9)  | 0.07007 (10)  | 0.0231 (3)                |
| H12 | 0.8514       | 0.4589       | 0.0905        | 0.028*                    |
| C13 | 0.5552 (3)   | 0.40652 (9)  | 0.12651 (10)  | 0.0210 (3)                |
| H13 | 0.5911       | 0.4160       | 0.1840        | 0.025*                    |
| C14 | -0.2430 (3)  | 0.21041 (9)  | 0.24557 (9)   | 0.0181 (3)                |
| C15 | -0.4253 (3)  | 0.23521 (9)  | 0.29282 (9)   | 0.0216 (3)                |
| H15 | -0.4386      | 0.2899       | 0.3075        | 0.026*                    |
| C16 | -0.5866 (3)  | 0.17960 (10) | 0.31825 (10)  | 0.0242 (3)                |
| H16 | -0.7085      | 0.1967       | 0.3509        | 0.029*                    |
| C17 | -0.5729 (3)  | 0.10054 (10) | 0.29707 (10)  | 0.0229 (3)                |
| H17 | -0.6851      | 0.0633       | 0.3145        | 0.028*                    |
| C18 | -0.3944 (3)  | 0.07550 (10) | 0.25005 (10)  | 0.0236 (3)                |
| H18 | -0.3855      | 0.0209       | 0.2347        | 0.028*                    |
| C19 | -0.2272 (3)  | 0.12954 (9)  | 0.22487 (9)   | 0.0203 (3)                |
| H19 | -0.1030      | 0.1115       | 0.1937        | 0.024*                    |
|     |              |              |               |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$      |
|-----|------------|------------|------------|-------------|------------|---------------|
| Cl1 | 0.0690 (4) | 0.0219 (2) | 0.0225 (2) | -0.0056 (2) | 0.0144 (2) | -0.00746 (16) |
| N1  | 0.0189 (7) | 0.0167 (6) | 0.0154 (6) | 0.0013 (5)  | 0.0018 (5) | -0.0014 (5)   |
| N2  | 0.0240 (7) | 0.0208 (6) | 0.0204 (7) | 0.0018 (5)  | 0.0026 (6) | -0.0020 (5)   |

# supplementary materials

| N3  | 0.0239 (7)  | 0.0215 (6) | 0.0203 (6) | 0.0017 (5)  | 0.0032 (5)  | -0.0029 (5) |
|-----|-------------|------------|------------|-------------|-------------|-------------|
| N4  | 0.0258 (8)  | 0.0235 (7) | 0.0295 (8) | 0.0034 (6)  | 0.0058 (6)  | 0.0021 (6)  |
| C1  | 0.0215 (8)  | 0.0152 (6) | 0.0141 (7) | -0.0013 (6) | 0.0048 (6)  | -0.0006 (5) |
| C2  | 0.0205 (8)  | 0.0193 (7) | 0.0183 (7) | 0.0015 (6)  | 0.0028 (6)  | 0.0018 (6)  |
| C3  | 0.0286 (9)  | 0.0220 (8) | 0.0165 (7) | -0.0068 (6) | 0.0004 (6)  | 0.0021 (6)  |
| C4  | 0.0376 (10) | 0.0159 (7) | 0.0164 (7) | -0.0045 (7) | 0.0099 (7)  | -0.0018 (6) |
| C5  | 0.0283 (9)  | 0.0194 (7) | 0.0267 (8) | 0.0029 (6)  | 0.0111 (7)  | 0.0003 (6)  |
| C6  | 0.0199 (8)  | 0.0207 (7) | 0.0208 (7) | 0.0012 (6)  | 0.0042 (6)  | 0.0010 (6)  |
| C7  | 0.0208 (8)  | 0.0160 (7) | 0.0170 (7) | 0.0016 (6)  | 0.0002 (6)  | -0.0001 (5) |
| C8  | 0.0193 (8)  | 0.0198 (7) | 0.0145 (7) | 0.0056 (6)  | 0.0020 (6)  | 0.0003 (5)  |
| C9  | 0.0211 (8)  | 0.0144 (7) | 0.0199 (7) | 0.0025 (6)  | 0.0019 (6)  | 0.0003 (5)  |
| C10 | 0.0217 (8)  | 0.0201 (7) | 0.0200 (7) | 0.0001 (6)  | 0.0010 (6)  | -0.0002 (6) |
| C11 | 0.0247 (9)  | 0.0225 (8) | 0.0196 (7) | 0.0034 (6)  | 0.0024 (6)  | 0.0006 (6)  |
| C12 | 0.0199 (8)  | 0.0192 (7) | 0.0303 (9) | 0.0025 (6)  | 0.0020 (7)  | 0.0019 (6)  |
| C13 | 0.0232 (8)  | 0.0178 (7) | 0.0215 (8) | 0.0019 (6)  | -0.0012 (6) | 0.0002 (6)  |
| C14 | 0.0179 (8)  | 0.0219 (7) | 0.0145 (7) | 0.0025 (6)  | 0.0010 (6)  | 0.0010 (6)  |
| C15 | 0.0233 (9)  | 0.0245 (8) | 0.0171 (7) | 0.0063 (6)  | 0.0031 (6)  | -0.0002 (6) |
| C16 | 0.0208 (8)  | 0.0333 (9) | 0.0191 (8) | 0.0054 (7)  | 0.0060 (6)  | 0.0024 (6)  |
| C17 | 0.0197 (8)  | 0.0282 (8) | 0.0212 (8) | -0.0014 (7) | 0.0034 (6)  | 0.0072 (6)  |
| C18 | 0.0255 (9)  | 0.0232 (8) | 0.0221 (8) | 0.0014 (6)  | 0.0015 (7)  | 0.0037 (6)  |
| C19 | 0.0220 (8)  | 0.0211 (7) | 0.0180 (7) | 0.0050 (6)  | 0.0038 (6)  | 0.0017 (6)  |
|     |             |            |            |             |             |             |

# Geometric parameters (Å, °)

| Cl1—C4   | 1.7350 (15) | C8—C14      | 1.473 (2)   |
|----------|-------------|-------------|-------------|
| N1—C7    | 1.3756 (19) | С9—С13      | 1.391 (2)   |
| N1—C8    | 1.3776 (19) | C9—C10      | 1.402 (2)   |
| N1—C1    | 1.4425 (18) | C10—C11     | 1.388 (2)   |
| N2—C7    | 1.3166 (19) | С10—Н10     | 0.9500      |
| N2—N3    | 1.3887 (18) | C11—H11     | 0.9500      |
| N3—C8    | 1.3169 (19) | C12—C13     | 1.389 (2)   |
| N4—C11   | 1.349 (2)   | С12—Н12     | 0.9500      |
| N4—C12   | 1.354 (2)   | С13—Н13     | 0.9500      |
| C1—C6    | 1.384 (2)   | C14—C19     | 1.399 (2)   |
| C1—C2    | 1.389 (2)   | C14—C15     | 1.401 (2)   |
| C2—C3    | 1.389 (2)   | C15—C16     | 1.390 (2)   |
| С2—Н2    | 0.9500      | C15—H15     | 0.9500      |
| C3—C4    | 1.384 (2)   | C16—C17     | 1.371 (2)   |
| С3—Н3    | 0.9500      | C16—H16     | 0.9500      |
| C4—C5    | 1.384 (2)   | C17—C18     | 1.383 (2)   |
| C5—C6    | 1.387 (2)   | С17—Н17     | 0.9500      |
| С5—Н5    | 0.9500      | C18—C19     | 1.394 (2)   |
| С6—Н6    | 0.9500      | C18—H18     | 0.9500      |
| С7—С9    | 1.476 (2)   | C19—H19     | 0.9500      |
| C7—N1—C8 | 104.79 (12) | C10—C9—C7   | 122.95 (14) |
| C7—N1—C1 | 126.29 (12) | C11—C10—C9  | 118.93 (15) |
| C8—N1—C1 | 128.88 (12) | C11-C10-H10 | 120.5       |
| C7—N2—N3 | 107.49 (12) | С9—С10—Н10  | 120.5       |
| C8—N3—N2 | 107.53 (12) | N4—C11—C10  | 123.67 (15) |
|          |             |             |             |

| C11—N4—C12   | 116.69 (14)  | N4—C11—H11      | 118.2        |
|--------------|--------------|-----------------|--------------|
| C6—C1—C2     | 121.40 (14)  | C10-C11-H11     | 118.2        |
| C6—C1—N1     | 118.50 (14)  | N4—C12—C13      | 123.46 (15)  |
| C2           | 120.07 (13)  | N4—C12—H12      | 118.3        |
| C3—C2—C1     | 119.37 (15)  | C13—C12—H12     | 118.3        |
| С3—С2—Н2     | 120.3        | C12—C13—C9      | 119.22 (15)  |
| C1—C2—H2     | 120.3        | C12—C13—H13     | 120.4        |
| C4—C3—C2     | 118.93 (15)  | C9—C13—H13      | 120.4        |
| С4—С3—Н3     | 120.5        | C19—C14—C15     | 118.95 (14)  |
| С2—С3—Н3     | 120.5        | C19—C14—C8      | 123.24 (13)  |
| C3—C4—C5     | 121.82 (14)  | C15—C14—C8      | 117.78 (13)  |
| C3—C4—Cl1    | 119.20 (13)  | C16-C15-C14     | 119.83 (14)  |
| C5—C4—Cl1    | 118.97 (13)  | С16—С15—Н15     | 120.1        |
| C4—C5—C6     | 119.22 (15)  | C14—C15—H15     | 120.1        |
| С4—С5—Н5     | 120.4        | C17—C16—C15     | 121.20 (15)  |
| С6—С5—Н5     | 120.4        | С17—С16—Н16     | 119.4        |
| C1—C6—C5     | 119.25 (15)  | C15—C16—H16     | 119.4        |
| С1—С6—Н6     | 120.4        | C16—C17—C18     | 119.42 (15)  |
| С5—С6—Н6     | 120.4        | С16—С17—Н17     | 120.3        |
| N2—C7—N1     | 110.14 (13)  | С18—С17—Н17     | 120.3        |
| N2—C7—C9     | 124.07 (13)  | C17—C18—C19     | 120.77 (15)  |
| N1—C7—C9     | 125.78 (13)  | C17—C18—H18     | 119.6        |
| N3—C8—N1     | 110.04 (13)  | C19—C18—H18     | 119.6        |
| N3—C8—C14    | 123.24 (13)  | C18—C19—C14     | 119.81 (14)  |
| N1           | 126.71 (13)  | С18—С19—Н19     | 120.1        |
| C13—C9—C10   | 117.97 (14)  | C14—C19—H19     | 120.1        |
| C13—C9—C7    | 119.06 (14)  |                 |              |
| C7—N2—N3—C8  | -0.17 (17)   | C1—N1—C8—C14    | -2.4 (2)     |
| C7—N1—C1—C6  | 69.64 (19)   | N2—C7—C9—C13    | 33.6 (2)     |
| C8—N1—C1—C6  | -107.64 (18) | N1—C7—C9—C13    | -145.59 (15) |
| C7—N1—C1—C2  | -108.42 (17) | N2—C7—C9—C10    | -144.90 (16) |
| C8—N1—C1—C2  | 74.3 (2)     | N1—C7—C9—C10    | 35.9 (2)     |
| C6—C1—C2—C3  | -0.4 (2)     | C13—C9—C10—C11  | 2.2 (2)      |
| N1—C1—C2—C3  | 177.58 (13)  | C7—C9—C10—C11   | -179.20 (14) |
| C1—C2—C3—C4  | 0.0 (2)      | C12—N4—C11—C10  | -1.6 (2)     |
| C2—C3—C4—C5  | 0.3 (2)      | C9—C10—C11—N4   | -0.6 (2)     |
| C2—C3—C4—Cl1 | -179.82 (11) | C11—N4—C12—C13  | 2.1 (2)      |
| C3—C4—C5—C6  | -0.1 (2)     | N4—C12—C13—C9   | -0.5 (2)     |
| Cl1—C4—C5—C6 | 179.97 (12)  | C10—C9—C13—C12  | -1.7 (2)     |
| C2—C1—C6—C5  | 0.6 (2)      | C7—C9—C13—C12   | 179.66 (13)  |
| N1—C1—C6—C5  | -177.46 (13) | N3—C8—C14—C19   | -147.90 (16) |
| C4—C5—C6—C1  | -0.3 (2)     | N1—C8—C14—C19   | 32.6 (2)     |
| N3—N2—C7—N1  | 0.34 (17)    | N3—C8—C14—C15   | 30.2 (2)     |
| N3—N2—C7—C9  | -179.00 (14) | N1—C8—C14—C15   | -149.32 (15) |
| C8—N1—C7—N2  | -0.37 (17)   | C19—C14—C15—C16 | 0.0 (2)      |
| C1—N1—C7—N2  | -178.18 (14) | C8—C14—C15—C16  | -178.22 (14) |
| C8—N1—C7—C9  | 178.95 (14)  | C14—C15—C16—C17 | -0.8 (2)     |
| C1—N1—C7—C9  | 1.1 (2)      | C15—C16—C17—C18 | 0.5 (2)      |
| N2—N3—C8—N1  | -0.06 (17)   | C16—C17—C18—C19 | 0.7 (2)      |

# supplementary materials

| N2—N3—C8—C14 | -179.67 (13) | C17—C18—C19—C14 | -1.5 (2)    |
|--------------|--------------|-----------------|-------------|
| C7—N1—C8—N3  | 0.26 (17)    | C15-C14-C19-C18 | 1.2 (2)     |
| C1—N1—C8—N3  | 177.99 (14)  | C8—C14—C19—C18  | 179.28 (15) |
| C7—N1—C8—C14 | 179.85 (14)  |                 |             |



